הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי"

Transcript

1 הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים של K וכל הראשוניים P O K כך ש P. עבור איברים K,{ 1,..., n } נגדיר את n S 1,..., בתור S יחד עם כל הראשוניים עבורם 1 i עבור i כלשהו. ע"י המשוואה עבור K וכן S I נגדיר את הסמל FL/K כלומר F L/K F L/K 1 כאשר.L K 1

2 למשל עבור 11 p וכן 5 נקבל שאכן 5 הוא שארית ריבועית מודולו od 2.4 ראשית 11 איננו מסועף ב 5 2,Q כי הדיסקרימיננטה היא.5 כעת 11 od x 2 5 x 4 x + 4 ולכן נקבל כי ,11 כאשר 5 + 4, 5 4 אידיאלים צמודים תחת הפעולה של /Q,Gl Q 2 5 ולכן 11 מתפצל לחלוטין. מאחר שהוא מתפצל לחלוטין, הפרובניוס שווה ליחידה. 5 ממשפט אוילר ונקבל כי 1 עבור 11 p וכן 7 נקבל ש 7 הוא לא שארית ריבועית מודולו 11. ראשית 11 איננו מסועף ב 7 2,Q כי הדיסקרימיננטה היא.28 כעת 11 od x 2 7 x אי פריק, ולכן 11 הוא אינרטי, ושדה השאריות הוא מגודל,11 2 לכן הפרובניוס של 11 יוצר של חבורת גלואה, והוא מסדר 2. ולכן הפעולה של הפרובניוס על 7 נעשית ע"י בחירה בצמוד גלואה, במקרה של שדות ממשיים לחלוטין, זה המינוס כעת 1 עוד דוגמא 5 p, שאריות ריבועיות מודולו 5.0, 1, 4 במקרה שלנו, x 2 מודולו 5 מקבלים x 2 x od 5 איננו מסועף, אך גם לא מתפצל לחלוטין אחרת x 2 y 2,5 מודולו 5 נקבל x 2 y 2 0 שאין לו פתרונות לא טריוואליים, ולכן 5 ראשוני אינרטי. ולכן הפרובניוס הוא יוצר של חבורת גלואה, ונקבל כי שדה השאריות הוא מסדר 5, 2 כלומר נקבל שפעולת הפרובניוס מעבירה לצמוד גלואה, שזה, ולכן נקבל. 5 נקבל כי 1, סמל לזנדר. p p 1 הערה נזכור כי הריבועים בחבורה Z/pZ מאופיינים ע"י קרקטר דיריכלה ריבועי 2 טענה µ הוכחה מספיק להראות את זה עבור, O K ראשוניים., ומאחר ש F L/K איבר של חבורת גלואה, הוא F L/K נעלה בחזקת ונקבל. FL/K נקבל ומכן שהוא K אוטומורפיזם,, F L/K אוטומורפיזם ולכן נקבל כי F L/K σf L/Kσ 1 [ σf L/Kσ 1 F L/K σσ 1 כעת אם נתבונן ב 1 σ,σf L/K אז נקבל ] σσ 1 σσ 1. σσ 1 מאחר שלפי ההנחה,µ K וכן σ הוא K אוטומורפיזם, נקבל כי K K, L K נקבל כי אז עבור L K, טענה אם I S, הוכחה לפי ההגדרות FL 2

3 FL /K FL/K F L/K הזיהוי של הפרובניוס במעבר בין השדות L, L נעשה לפי הטענה בספר בפרק.2. אם S, I טענה F L/KF L/K ונקבל F L/K נפעיל על זה את, FL/K נתחיל מההגדרה,. F L/K. F L/KF L/K ולכן נקבל כי, F L/K כעת לפי ההגדרה, מצד שני, בגלל ש F L/K הוא אוטומורפיזם נקבל כי,F L/K F L/K F L/K בנוסף לפי ההגדרה FL/K נקבל ולכן ע"י השוואת הצדדים נקבל את הדרוש. כאשר. n n / S תוצאה טענה קריטריון אוילר מוכלל אם / S ראשוני, אזי 1 N כאשר /,N O K כמו כן N 1 od p הוכחה נראה כי מחלק את 1.N יהי ω שורש פרימיטיבי מסדר, הוא כמובן K שלם כי הוא שורש של 1 x, ולכן נקבל כי 1 ω וכן.0 < i < עבור ω i 1 כעת ניקח רדוקציה למשוואה מודולו K ונקבל.ω 1 od K כמו כן, גם כאן הסדר ω הוא, אחרת יש i כך ש p ω i 1 + עבור p כלשהו, בפרט אם נעלה את זה בחזקת נקבל + p 1 1 בשדה, דבר שלא יתכן, מאחר שאז יהיו קיימים בחוג מחלקי אפס. מצד שני, השדה K הוא מסדר,N ולכן ע"פ משפט אוילר לחבורה הכפלית שלו ω, N 1 1 od K והרי מטענת החילוק הסדרים הידועה, והגדרת הסדר כמינימלי, נקבל כי 1 N. כעת להוכחת הנוסחא.. לפי ההגדרה FL/K נתבונן בשדה L, ובהרחבת השדות הסופיים / O L מעל O K / כאשר ראשוני היושב מעל. נבצע רדוקציה למשוואה הזאת מודולו ומהגדרת פעולת הפרובניוס בשדה השאריות.2 Prop. נקבל. N 1 od p כעת מאחר ש 1 N נקבל כי 1 f, N ולכן בסה"כ אפשר להוציא ולחלק ב ולקבל כי N 1 od p. N 1. בפרט נקבל ברדוקציה מודולו p כי od p טענה הדדיות גבוהה התנאים הבאים שקולים: יש פתרון למשוואה x od p עבור.x O. יש פתרון למשוואה x עבור.x K

4 הוכחה נראה כי 2 גורר 1.. N 1 x N 1 1 od p נקבל x אם, N 1 במקרה זה, נראה כי 1 גורר,2 נניח כי g יוצר של החבורה הציקלית,k נסמן, g r וכן,x g y אז הפתרון המבוקש שקול ל,g r g y od p כלומר 1 N,y r od למשוואה הזאת יש פתרון אמ"מ N 1 נקבל כי,ord g N אך מכך ש 1,g rn 1, r כי 1 N ממשפט אוילר הקודם. כעת, g r אז תנאי 1 שקול לכך ש 1. r ולכן, rn 1 x עבור x, y O זרים, מאחר שניתן להניח כי 0, נקבל כי כעת גורר,2 נקבל כי y, x ולכן y, x מאחר שהנחנו זרות, נקבל 0 y. x ולכן ניתן לקחת רדוקציה y 0 של המשוואה מודולו p ולקבל את הדרוש. עבור 2 גורר, נשתמש בלמה של הנזל. נזכור כי K הוא ההשלמה של השדה הגלובלי K ביחס לאידיאל p. למת הנזל יהי K שדה שלם ביחס להערכה וכן [x] f. O K יהי α 0 O K כך ש f α 0 < f α 0 2. α α 0 fα f α אזי יש α O K כך ש 0 α f וכן הוכחה של הטענה בעזרת הלמה נגדיר [x].f x x O K. f α 0 p כלומר 1,α0 לפי,2 יש α 0 O כך ש od p. f α 0 α 0 1 מצד שני, 1,f x x ולכן p, הוא כזה כך ש p בנוסף הנחנו כי הפיך. מאחר ש α, 0 ניתן להניח כי, 0 od p ולכן 1 גם כן. ולכן 1 וסה"כ נקבל את הדרוש מהלמה של הנזל.. טענה אם ו S I שלם, כך ש od אזי הוכחה נשתמש בטענה.2 מהספר. L ונקבל את הדיאגרמה המתחלפת הבאה. K, וכן L K,K K I S F L /K G N K /K I S F L/K θ G כעת נניח כי מתפרק ב L ל, f p i e כעת בשדה,L הפירוק נשאר, מאחר ש, od ולכן עבור גורם p i בפירוק של p i בשדה L נקבל כי,N K /Kp i 1 p i ולכן.F L /K F L/K L נקבל את הדרוש. K, L K ו משיקול סימטרי עבור K K וכן טענה נניח כי S, I וכן c 1 עבור K c כך ש c K לכל, S אזי 4

5 הוכחה ניזכר בכלל ארטין הגס., נקבל כי עבור c מתקיים כי 1 S F, c ולכן נקבל שמתקיים.F S F S מכאן שהפרובניוס פועל על באותה הצורה. טענה יהי K Q וכן 2, יהיו, Q וכן P, Q מספרים חיוביים שלמים אי זוגיים. מוגדר, כפלי בכל ארגומנט בנפרד ומקיים P P עבור 1 P, הסמל ±1 P P if od P. P Q כעת נטען כי אם P Q od 8 0 כאשר 2 τ 0 עם 1 0,2, אז מתקיים כי הוכחה נשתמש בטענה הקודמת, צריך להראות כי c P Q 1 עבור Q c כך ש 2 c Q לכל.p כאשר 0 {2,, p} עבור, הדבר ברור, כי > 0 Q.P, עבור 2, ניקח רדוקציה של המשוואה מודולו 8 ונקבל P. Q od 8 כעת הנחנו כי Q איזוגי, ולכן הפיך מודולו,8 ולכן.P Q 1 1 od 8.P Q 1 Q 2 כעת מספרים השקולים ל 1 מודולו 8 הם ריבועים 2 אדיים, ולכן 2 עבור p כאשר,p 0 ניקח רדוקציה מודולו,p והנחנו כי 1 P,, ולכן Q הפיך מודולו,p ולכן נקבל g. אז ניקח Z pz.p Q 1 1 od p כעת החבורה הכפלית מודולו p עבור 2 p היא ציקלית, עם נניח שורש פרימטיבי 1 p h, g בתור שורש ריבועי של היחידה. 2 מהלמה של הנזל עבור הפולינום x 2 1 ב [ x ] Z, p נקבל הרמה p אדית של אותו שורש למספר ב Z p ולכן. P Q 1 Q 2 נקבל כי p 5

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

מתרגלת: שירה גילת סמסטר א 2017 תשע"ז

מתרגלת: שירה גילת סמסטר א 2017 תשעז חוברת תרגולים בקורס "תורת גלואה" 88 311 21 בפברואר 2017 מתרגלת: שירה גילת סמסטר א 2017 תשע"ז ערך: איתי רוזנבאום 1 תורת גלואה תרגול ראשון חזרה מחוגים F שדה F. חוג הפולינומים עם מקדמים ב F [λ] זהו חוג אוקלידי,

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

מבוא לתורת השדות עוזי וישנה

מבוא לתורת השדות עוזי וישנה מבוא לתורת השדות עוזי וישנה מבוא לתורת השדות מהדורה 1.38 הקדמה. שדות הם החוגים המוצלחים ביותר: הם קומוטטיביים, וכל האברים שלהם הפיכים. המרכז של כל חוג פשוט הוא שדה, ולכן אין זה פלא ששדות תופסים מקום מרכזי

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך. סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

תורת המספרים ושימושים בקריפטוגרפיה

תורת המספרים ושימושים בקריפטוגרפיה תורת המספרים ושימושים בקריפטוגרפיה יובל קפלן ( בקורס "תורת סיכום הרצאות פרופ אלכס לובוצקי ) המספרים ושימושים בקריפטוגרפיה" (80611) באוניברסיטה העברית,.007 8 תוכן מחברת זו הוקלד ונערך עלÎידי יובל קפלן.

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

מבנים אלגבריים למדעי המחשב מערכי תרגול קורס פברואר 2017, גרסה 1.5

מבנים אלגבריים למדעי המחשב מערכי תרגול קורס פברואר 2017, גרסה 1.5 מבנים אלגבריים למדעי המחשב מערכי תרגול קורס 89-214 פברואר 2017, גרסה 1.5 אוניברסיטת בר אילן סמסטר א תשע ז תוכן העניינים 3 מבוא.............................. 4 מבוא לתורת המספרים................... 1 8

Διαβάστε περισσότερα

מבנים אלגבריים למדעי המחשב מערכי תרגול קורס אבי אלון, תומר באואר וגיא בלשר ינואר 2016, גרסה 0.22

מבנים אלגבריים למדעי המחשב מערכי תרגול קורס אבי אלון, תומר באואר וגיא בלשר ינואר 2016, גרסה 0.22 מבנים אלגבריים למדעי המחשב מערכי תרגול קורס 89-214 אבי אלון, תומר באואר וגיא בלשר ינואר 2016, גרסה 0.22 אוניברסיטת בר אילן סמסטר א תשע ו תוכן העניינים 3 מבוא.............................. 3 מבוא לתורת

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

אלגברה לינארית 1 יובל קפלן

אלגברה לינארית 1 יובל קפלן אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות λ = 0 A. F n n ערך עצמי של A אם ורק אם A לא הפיכה..det(λ I ערך עצמי של λ F.A F n n n A) = 0 אם ורק אם: A v וקטור עצמי של Tהמתאים יהי T: V V אופרטור לינארי. אם λ F ערך עצמי של,T לערך העצמי λ, אזי λ הוא

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

c ארזים 15 במרץ 2017

c ארזים 15 במרץ 2017 הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה

Διαβάστε περισσότερα

מבנים אלגבריים עוזי וישנה

מבנים אלגבריים עוזי וישנה מבנים אלגבריים עוזי וישנה מבנים אלגבריים מהדורה 2.58 למתרגל הקדמה. חוברת זו ערוכה ומסודרת לפי תוכנית הלימודים בקורס 'מבנים אלגבריים' למדעי המחשב, 89-214, באוניברסיטת בר אילן. הקורס (בהיקף של שעתיים הרצאה

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

תרגול 1: מד"ר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או:

תרגול 1: מדר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או: אריאל סטולרמן 1 סיכומי תרגולים: סיכומים במד"ר 1 סמסטר קיץ 2009 (פרופ' ודים אוסטפנקו) תרגול 1: סוגים של מד"ר ודרכי פתרון: חשוב: לשים לב לקבוע c המצורף כתוצאה מאינטגרציה דרך פתרון שיטה צורה הפרדת משתנים

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 11

אלגברה ליניארית 1 א' פתרון 11 אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)

Διαβάστε περισσότερα

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשסט 467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

מבוא לאלגברה ליניארית

מבוא לאלגברה ליניארית BEN GURION UNIVERSITY BE ER SHEVA, ISRAEL אוניברסיטת בן גוריון בנגב באר שבע מבוא לאלגברה ליניארית אמנון יקותיאלי המחלקה למתמטיקה אוניברסיטת בן גוריון amyekut@mathbguacil חוברת זו מיועדת לקורסים באלגברה

Διαβάστε περισσότερα

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס תורת הקבוצות (80200) באוניברסיטה העברית, תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010.

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010. ודים בוגיינקו תורגם ע"י מריה סבצ'וק משוואות פ ל זהו תרגום מרוסית של הספר: В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 00. http://biblio.mccme.ru/ode/34/shop קובץ PDF של ההוצאה הראשונה ברוסית:

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין סיכום אינפי 2 9 ביוני 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך. סוכם ע"י נגה רוטמן בשעות לא הגיוניות בעליל,

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית 80423

מבוא ללוגיקה מתמטית 80423 מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

. {e M: x e} מתקיים = 1 x X Y

. {e M: x e} מתקיים = 1 x X Y שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 8

אלגברה ליניארית 1 א' פתרון 8 אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,

Διαβάστε περισσότερα

אלגברה לינארית 2 משפטים וטענות

אלגברה לינארית 2 משפטים וטענות אלגברה לינארית 2 משפטים וטענות סוכם ע"פ הרצאות פרופ' מ.קריבלביץ' 1.2 אידאלים של פולינומים הגדרה 1.13 יהי F שדה. קבוצת פולינומים [x] I F נקראת אידיאל ב [ x ] F אם מתקיים:.0 I.1.2 לכל f 1, f 2 I מתקיים.f

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

מבוא לתורת החבורות עוזי וישנה

מבוא לתורת החבורות עוזי וישנה מבוא לתורת החבורות עוזי וישנה 12 בפברואר 2017 מבוא לתורת החבורות מהדורה 3.931 הקדמה. חוברת זו ערוכה ומסודרת לפי תוכנית הלימודים בקורס "אלגברה מופשטת 1" לתלמידי מתמטיקה, 88-211, באוניברסיטת בר אילן. הקורס

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

פונקציות מרוכבות בדצמבר 2012

פונקציות מרוכבות בדצמבר 2012 פונקציות מרוכבות 80519 אור דגמי, or@digmi.org 30 בדצמבר 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ גנאדי לוין בשנת לימודים 2013 מייל של המרצב: levin@math.huji.ac.il אפשר לקבוע פגישה. הקורסלאמבוססעלאףספרספציפי,

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

שדות הגדרת השדה: חשבון מודולו n: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות משפט: יהא F שדה. משפט: יהא F שדה ו- (mod )

שדות הגדרת השדה: חשבון מודולו n: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות משפט: יהא F שדה. משפט: יהא F שדה ו- (mod ) שדות הגדרת השדה: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות אחת נקראת חיבור ותסומן ב + האחרת נקראת כפל ותסומן ב * כך שתתקיימנה הדרישות הבאות: a, b F a b. סגירות לחיבור: F a F a 0 0 a a a, b, c F a

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα